N90-22307

Spacecraft Command Verification:
The AI Solution

Lorraine M. Fesq
Amy Stephan
TRW
Redondo Beach, CA

Brian K. Smith
UCLA
Los Angeles, CA

ABSTRACT

Recently, a knowledge-based approach was used to develop a
system called the Command Constraint Checker (CCC) for TRW.
CCC was created to automate the process of verifying spacecraft
command sequences. To check command files by hand for timing
and sequencing errors is a time-consuming and error-prone
task. Conventional software solutions were rejected when it was
estimated that it would require 36 man-months to build an
automated tool to check constraints by conventional methods.
Using rule-based representation to model the various timing and
sequencing constraints of the spacecraft, CCC was developed and
tested in only three months. By applying artificial intelligence
techniques, CCC designers were able to demonstrate the viability
of Al as a tool to transform difficult problems into easily managed
tasks. This paper discusses the design considerations used in
developing CCC and examines the potential impact of this system
on future satellite programs.

INTRODUCTION

Even after a spacecraft is launched, it continues to receive information from
ground stations telling it what actions to perform. This information is in the
form of spacecraft commands. These commands are formulated on the ground,
transmitted to the spacecraft, and used to instruct the spacecraft to perform
actions such as turning instruments on and off, switching relays, or
maneuvering the craft into a new orientation. The spacecraft hardware being
commanded consists of highly specialized electronics which must be carefully
reconfigured. The commands sent to the spacecraft must follow strict
guidelines as to their order and timing. These guidelines are known as
constraints, and all sequences of commands must be examined to assure that
they meet all constraints before they are transmitted to the spacecraft. This
pre-checking of command sequences is a very involved and time-consuming
task. Performed manually, it could take a week to check one set of commands.
Developing a conventional software program to automate this process also
would be a difficult and costly task, estimated to take at least 36 man-months.
This paper describes an expert system that was developed in only three months
to automate the process of checking spacecraft command sequences for
constraint violations.

157

DESCRIPTION OF THE PROBLEM

There are two major types of constraints which must be met within all
spacecraft command sequences: timing constraints and ordering constraints.
Consider the following example. A spacecraft is commanded to start recording
information onto an on-board tape recorder. This action may involve
numerous individual commands, many of them going to the same box on the
spacecraft. Each box has a limit of how fast it can receive commands, in much
the same manner as humans have a limit of how fast they can absorb sensory
input. If commands are sent too fast, the box will not receive all of them, and
the spacecraft will not perform the desired action. For example, all commands
to the spacecraft Tape Recorder Box must be separated by 50 milliseconds. This
is an example of a timing constraint,

To accomplish the task of recording data, a number of commands must be sent
to the Tape Recorder, and these commands must be in a specific order. An
example of an ordering constraint would be that the “Tape Recorder On”
command must precede the “Tape Recorder Rewind” command, which in turn
must precede the “Tape Recorder Record” command.

Spacecraft command sequences can contain hundreds of commands, all of
which must meet all timing and ordering constraints, The number of
constraints can also be on the order of hundreds. Checking all commands (n)
against all constraints (k) would require (n(n-1)/2)*k operations, or order
O(n2k) operations. Checking a medium sized file of 50 commands against 50
constraints could require up to 61,250 operations - an enormous task when
performed by hand. An automated system seems an appropriate solution, but
developing a conventional software package to perform the checking has
been estimated on one spacecraft program to be prohibitive.

The following section describes an Al solution to automating this process, and
contrasts the solution to a less efficient, more costly conventional approach.

NT HE PROBLEM

The constraints against which commands are checked closely resemble expert
system rules. Constraints generally consist of several conditional clauses and
an error that will occur if these conditions are met. This format can be easily
translated into the type of rules typically wused in rule-based production
systems. For example:

IF the [tape-recorder rewind] command is received before the
[tape-recorder on] command
THEN [constraint X is violated]

Commands themselves are symbolic in nature, and generally can be
represented as a spacecraft box and an action to be performed on that box. It is
more natural to think of a command using its symbolic representation, i.e.
[TAPE-RECORDER ON], than its numeric (hexidecimal) representation. Because
commands are easily represented as sets of symbols, they can be used as facts
in an expert system,

158

A commercial inference engine could efficiently match facts against rules and
note violations, leaving the designer the tasks of writing the rules, converting
commands into facts and choosing the appropriate hardware and software
tools with which to build the system. An off-the-shelf inference engine
seemed the ideal choice for this straightforward production system. By
employing such a system, we would have access to efficient unification and
database management algorithms, leaving the designer free to concentrate on
optimizing the rule and fact representation.

Expert systems seemed ideally suited to solve what had been an unsolvable
problem. The set of constraints on satellite commands, although large, is well-
documented and would require a domain expert only to explain the highly
specialized language in which these constraints are described. Programming
an expert system to check constraints would require a straightforward
conversion of constraints into rules and a scheme for representing commands
as facts. To code this system conventionally would require pages of awkward
IF-THEN and CASE statements, performing numeric calculations on data that 1S
inherently symbolic. In addition to the reduction in code size, the expert
system approach also promised a significant increase in speed. The inference
engine would at most match each command against each constraint clause, an
operation of order O(nk) as opposed to order O(n2k), significantly reducing the
time needed check a file of commands.

Within three months, an expert system called the Command Constraint Checker
(CCC) was developed (see Figure 1). This system runs on an IBM-compatible PC,
which is currently used in NASA Control Centers to write and store command
procedures

Operator enters cmds

Command
Computer

Verified cmds

3. Verified cmds sent to S/C
AN |

2. CCC checks cmds for violations

N

Figure 1. Automated Process of Verifying Spacecratft (S/C) commands

159

before sending them to a spacecraft. Housing the CCC on the PC allows the
program to process actual command files to be sent to a spacecraft, eliminating
the need for users to input lengthy command sequences into the CCC. Running
the expert system on the PC also allows the CCC to be used on-line; command
sequences can be checked immediately before being transmitted.

The Command Constraint Checker consists of a menu-driven user interface, a
set of procedures to parse various formats of command files into rules, a rule
base, a commercial inference engine and a mechanism for reporting
violations to the user. To limit the number of rules in the system, rules are
designed to be as general as possible. For example, a constraint might read,

“Commands to the tape recorder must be at least 50 ms apart.” In the format
used in command procedures, however, it is not always easy to recognize
which commands control the tape recorder. A set of commands to this

instrument might be encoded as follows: CMTION, CMT20N, CMT10FF, CMT2OFF,
CMRWND, CMFF. Using these mnemonics, fifteen rules would be needed to
assure that none of the potential tape-recorder command pairs were less than
50 ms apart. If the command designation, TAPE-RECORDER, were included in
each command fact, only one rule would be needed to ensure that all tape
recorder commands were properly spaced. Using an existing database
containing information about all valid spacecraft commands, we were able to
abstract command mnemonics into facts amenable to the more general
language of the command constraints. As mnemonics are read from a
command file, they are matched against the command database and the
following information is asserted as part of the command fact:

COMMAND MNEMONIC As it appeared in the command procedure

HEXCODE The actual hex representation of the command
sent to the spacecraft.

DESTINATION BOX The box that will receive this command, i.e. tape
recorder.

COMMAND DATA The action to be sent to this box, i.e. REWIND

If a command mnemonic is not found in the database, the command is illegal
and this information is included in the user’s error report. A routine to
optimize the database command mnemonic search is included in the CCC.

The CCC contains parsing routines to convert several types of command
procedures into command facts. A menu-driven user interface allows the user
to input a command file name, a command database name, the rate at which
commands will be sent to the spacecraft and the type of command file to be
parsed. The command file formats range from simple lists of commands and
WAIT statements, to complicated files containing IF-THEN-ELSE, GOTO and WAIT
statements as well as variables. CCC employs the appropriate routines to parse
the command file into a list of mnemonics, checks these mnemonics against
the database and assigns an absolute time to each command. The CCC bases this
absolute time on the user-supplied rate at which commands are being sent to
the spacecraft. The first command is given the absolute time of 0, and each
successive command is assigned a time based on the uplink rate and the
number and duration of WAIT statements in the command file. The line
number of the command in the input file also is part of the command fact. If
the command fact causes a violation, this line number is included in the user’s

160

error report, allowing her to easily edit the original command file. A
command fact with all its fields might look like this:

[CMTI10OFF TAPE-RECORDER OFF 133A077 .128 5]
mnemonic destination data hex code absolute time line

While CCC automatically converts commands into facts, the designer must

represent constraints as rules. The task of maintaining the rule base is
simplified by several factors. All constraints on commands for a given
satellite typically are well-documented in that satellite’s mission operations
handbook. The page in the handbook on which a constraint appears is
included in that constraint’s documentation. This allows the engineer in
charge of maintaining the system to easily delete a rule if the constraint it
represents is later deemed unnecessary. Conversely, the close correlation

between IE-THEN rules and the language in the constraint descriptions will
allow an engineer with little or no background in expert systems to add new
constraints to the rule base.

The CCC required a compact forward-chaining inference engine capable of
interfacing with a conventional language and running on a PC. CLIPS, a
NASA-built expert system shell written in C meets all of these needs. Since
CLIPS rules can be run from within a C program, we were able to embed the
expert system in a conventional C program. This allowed us to perform
procedural tasks, such as the user-interface and file operations, in C and
actually identify the constraint violations using CLIPS (Figure 2). After all
inferences have been made, control returns to the C program which records
the CLIPS violation facts in a readable file for the user.

Command
Database

Hex
Representation

Command
Procedure

S/C CMD
Mnemonig

(o}
Interface

Command

Working Memory

CCC

Constraint
' Violations

Output File
identifying
Violations

Figure 2. CCC Block Diagram

161

STATUS

After three months of coding, a working version of the CCC is ready to be
delivered to its users. The program solicits user input through a menu-driven
interface, parses three formats of command files, checks these commands
against a command database and asserts them as command facts. It then runs
its rule base of 70 rules against the facts, and provides the user with a readable
output file listing the nature of all violations and warnings, including the line
number in the original command file of each flagged command. This
information allows the user to edit her command procedure and re-check it
with CCC before sending the commands to the spacecraft.

A rule base for a specific spacecraft, NASA’s Gamma Ray Observatory (GRO),
was developed to test the CCC. The 70 rules now in the CCC database cover about
90 percent of all GRO command constraints, including the constraints on those
commands most often sent. A detailed user’s guide has been developed,
explaining how the CCC may be adapted to a new spacecraft, as well as how it
may be modified to accommodate new constraints that arise during the life of
the spacecraft. Potential users have been given the opportunity to experiment
with CLIPS and gain familiarity with its rule structure so that they can
maintain the rule base with little aid from the designers. The system is able to
check a typical file of S0 commands in five minutes. This is a considerable
savings over the hours that previously were spent checking command
sequences manually,

No major problems were encountered while developing CCC. The choice of
languages and the hardware platform proved easy to use and adequate for our
needs. Excellent cooperation from domain experts and potential users sped the
development of this system, allowing us to complete the project on schedule
and within budget.

EFFECTIVENESS OF IMPLEMENTATION

Response from wusers has been enthusiastic. In several beta tests and
demonstrations, users have been impressed by the performance and usability
of CCC. Engineers who plan to apply this tool are happy to be free of the
tedious chore of checking command sequences by hand. Management also is
pleased with the results of the project, which produced an automated tool for
less than 10 percent of the estimated cost of building such a system using
conventional methods.

CCC is a classic example of how examining a software problem from an Al
perspective can change the nature of the problem. By observing the symbolic
nature of the commands and constraints, the CCC designers were able to
transform a difficult conventional problem into a relatively straightforward
expert system task. The application of artificial intelligence techniques to this
problem produced a useful tool that will save many wasted hours, thousands of
dollars and potentially the life of a spacecraft.

162

REFERENCES

1. Fesq, L., & Stephan, A. (February 1989). Advances in Spacecraft
Autonomy Using Artificial Intelligence Techniques. 12 Annual AAS
Guidance and Control Conference, Keystone, Colorado.

1. Giarratano, Joseph C. (1988). CLIPS USER’s Guide. Artificial Intelligence
Section, Lyndon B. Johnson Space Center.

2. Knuth, Donald E. (1973). The Art of Computer Programming, Vol. 1.
Addison-Wesley Publishing Co., Reading, Massachusetts.

3. Nilsson, Nils J. (1980). Principles of Artificial Intelligence. Morgan
Kaufman Publishers, Inc., Los Altos, CA.

4. Waterman, Donald A. (1986). A Guide to Expert Systems. Addison-Wesley
Publishing Co., Reading, Massachusetts.

163

